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Abstract
A theoretical approach to the crystalline-to-amorphous phase transformation
during self-irradiation is proposed. The different stages of the amorphization
process (metamictization) are shown to correspond to internally stressed
equilibrium states, associated with the minima of a free-energy functional,
in which the elastic distortions induced by the creation of amorphous material
are compensated by an internal stress-field, deriving from a unique stress-field
potential. The transformation dynamics is described in terms of a nucleation
and growth mechanism of amorphous regions involving a critical size.

1. Introduction

In some minerals radioactive elements such as uranium and thorium decay spontaneously by
α-radiation, creating heavy recoil nuclei that undergo ballistic collisions with the atoms of the
surrounding crystalline matrix, displacing them from their equilibrium positions. Over time
the long-range order of the original crystal is affected undergoing a gradual transformation to
an amorphous state called the metamict state [1, 2]. Such transformation is known to occur
naturally in mineral phases such as zircon [3], titanite [4], the apatites [5], pyrochlores [6]
and others [2]. Intensive experimental efforts have been made to clarify the amorphization
process leading to the metamict state by investigating either minerals of known age and U and
Th contents, or obtained by actinide doping,or by ion beam irradiation. These efforts have been
strongly motivated by the increasing importance of finding alternative ways to store the nuclear
waste produced world wide. One of the options being considered [8] is the immobilization
with specially formulated ceramic forms. The evaluation of the effect of radiation on their
crystalline phases and the resulting damages, as well as the correlated changes in their physical
and chemical properties, are some of the critical concerns for their application. In this respect
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zircon has recently become a model host matrix for studying encapsulating of plutonium waste
in ceramic materials [8].

Comprehensive studies on zircon (ZrSiO4) have revealed that the metamictization process
can be decomposed into three successive stages [7].

(1) At low degree of damage the material is essentially crystalline: α-particles produce
isolated defects, and α-recoil nuclei produce a few isolated amorphous embryos
surrounded by the crystalline matrix, which is expanded as a consequence of the
deformation produced by the defects.

(2) In an intermediate regime there is an increasing content of aperiodic regions in the material
with amorphous zones forming an interconnected network, and the volume swelling
reaches its maximum value.

(3) In the last stage of the amorphization process the long-range order is lost, but a short-range
order persists, with nanometric crystalline domains embedded in an amorphous matrix.

Different models have been proposed for describing the metamictization process, either
as due to an accumulation of point defects [9], or as an interface controlled effect [10], or as
resulting from a direct amorphization in the simple or multiple cascades following the recoil of
the nuclei [11, 12]. The three-stage evolution was recently interpreted in terms of successive
percolation regimes and transitions [13]. Although the combined picture resulting from these
models seems to be consistent with the experimental observations, it does not provide a clear
insight into the internal forces acting at the crystalline–metamict transformation and on its
thermodynamic nature. The aim of the present work is to describe a possible mechanism for
this transformation in the framework of an extension of the Lifshitz–Dzialoshinskii approach
to transitions to inhomogeneous crystal phases [14, 15]. The new feature in this extension
is that the free-energy density associated with the crystalline–metamict transformation has a
local gauge structure, which is required to compensate the spatial variation of the translational
symmetry in the partially or fully amorphized structure. In this context we propose

(1) that the different stages of the radiation induced transformation correspond to
equilibrium internally stressed states, i.e., are associated with minima of a free-energy
functional, in which the elastic distortions induced via the creation of amorphous regions
are compensated by an internal stress-field deriving from a unique stress-field potential,
and

(2) that the transformation dynamics can be depicted in terms of nucleation of amorphous
embryos with a growth of the amorphous regions via a merging process involving a specific
critical size.

2. Theoretical approach to the crystal-to-metamict transformation

Let us formulate our approach considering for simplicity that the order parameter associated
with the crystal–metamict transformation has two components η = ρ eiϕ and η∗ = ρ e−iϕ

associated with the two-branch star of a critical wavevector ±kc, where the amplitude ρ
and phase ϕ depend on the space coordinates xi (i = 1, 2, 3). Following the Lifshitz–
Dzialoshinskii model [14, 15], summarized in the appendix, the equilibrium distribution of
the order-parameter should correspond to the minima of a free-energy functional F = ∫

φ dV
where the sum runs over the volume of the sample, the free-energy density φ depending
on the order-parameter components and their spatial derivatives. In the standard model,
which aims to describe an aperiodic modulation of the crystal lattice, the order-parameter
usually transforms as a single irreducible representation of the crystal space-group, associated
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with a constant critical wavevector kc = ko. At variance, we will assume that the critical
wavevector associated with the transition to the metamict state is space dependent kc = k(xi )

and may vary continuously or discontinuously from one to another region of the damaged
crystalline structure. Such an assumption is well adapted to the different stages of the
metamictization process. It allows us to describe the last stage of the process in which a
short-range order persists [16], meaning that one has a preservation of the translation order
in localized nanometre-sized crystallites, which may vary from one crystallite to another.
In the intermediate stage, where the crystalline and amorphous regions percolate, a spatial
dependence of the wavevector is able to reflect the increasing content of aperiodic regions,
having different densities, which vary as a function of the self-irradiation dose [17], and
the formation of interconnected networks of amorphous regions. In the initial stage, the
wavevector remains constant in the crystalline matrix with localized discontinuities at the
forming amorphous domains. It has to be emphasized that in contrast to phase transitions
to homogeneous phases where the spectra of values of the order-parameter components and
critical wavevectors are discrete, at transitions to inhomogeneous phases the equilibrium values
of η(xi) and k(xi ) form continuous spectra, as is seen for example in the vibrational spectra of
titanite [18]. Therefore, neighbouring localized regions are induced by an infinite continuous
set of irreducible representations of the ‘parent’ crystal space-group, which are indexed by the
continuous spectrum of k(xi ).

Under the effect of the primitive translations t j ( j = 1, 2, 3) of the crystalline phase the
order-parameter components transform as

t�jη = eik·t jη and t�jη
∗ = e−ik·t jη∗ (1)

where the t�j are the primitive translation operators. Writing k(xi) = µ j(xi)t∗
j , where the t∗

j
are the reciprocal lattice translations, one has k · t j = 2πµ j and equation (1) becomes

t�jη = e2iπµ jη and t�jη
∗ = e−2iπµ j η∗. (2)

In contrast to η and η∗, the spatial derivatives ∂η

∂xi
and ∂η∗

∂xi
are not eigenfunctions of the

translation operators since one has t�j
(
∂η

∂xi

) = 2iπ ∂µ j

∂xi
e2iπµ jη + e2iπµ j ∂η

∂xi
and t�j

(
∂η∗
∂xi

) =
−2iπ ∂µ j

∂xi
e−2iπµ jη∗ + e−2iπµ j ∂η

∗
∂xi

. Diagonalizing these expressions one can introduce as
eigenfunctions of the t�j the covariant derivatives:

Diη = ∂η

∂xi
− iγ

∑

j

A jiη and D•
i η

∗ = ∂η∗

∂xi
+ iγ

∑

j

A jiη
∗ (3)

where the γ A ji are the components of a second rank tensor representing a compensating field
potential (a gauge-field potential in the sense given by Bogoliubov and Shirokov [19]), which
transforms under the t̂ j as

t�j (γ A ji) = γ A ji + 2π
∂µ j

∂xi
and t�j (Alj ) = γ Alj (l �= j) (4)

with γ representing a coupling constant between the order parameter and the compensating
field components. One can verify that t�j Diη = e2iπµ j Diη and t�j D•

i η
∗ = e−2iπµ j D•

i η
∗.

Accordingly, the free-energy density φ has a local gauge structure defined by η →
η e2iπµ j , η∗ → η∗ e−2iπµ j , and can be constructed from the gauge invariant quantities
ηη∗, ηD•

i η
∗, η∗Diη, and DiηD•

kη
∗. The equilibrium states are obtained by minimizing

the free energy F . Since one has from equation (3) ∂φ

∂Diη
= ∂φ

∂(
∂η

∂xi
)
,

∂φ

∂D•
i η

∗ = ∂φ

∂

(
∂η∗
∂xi

) and
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∂φ

∂ A j i
= ∂φ

∂Diη
(−iη) + ∂φ

∂D•
i η

∗ (iη∗), the minimization of F can be performed independently with
respect to the A ji components. The corresponding Euler–Lagrange equations read

∂φ

∂A ji
= εikl

∂

∂xk

(
∂φ

∂σ jl

)

(5)

where εikl is the antisymmetric permutation tensor and

σ jl = −εikl
∂A jl

∂xk
. (6)

On the other hand, since φ is invariant by the t�j operators, it follows from Noether’s theorem
that the first integrals

α j i = iη∗ ∂φ

∂
(
∂η∗
∂xi

) − iη
∂φ

∂
(
∂η

∂xi

) = ∂φ

∂A ji
(7)

are conserved and obey the continuity equation:

∂α j i

∂xi
= 0. (8)

Introducing the conjugate quantity ω jl = ∂φ

∂σ j l
, the equation of state (5) takes the form

α j i = εikl
∂ω jl

∂xk
(9)

which can be identified as the Kröner equation [20] relating the dislocation density tensor
componentsα j i and the components of the distortion tensor [21]ω jl . Therefore, the conjugate
componentsσ j i correspond to the internal stress tensor [22],and one can infer from equation (6)
the physical meaning of the compensating field potential, which represents an internal stress-
field potential. In summary, when assuming a space dependence of the order parameter and of
the critical wavevector associated with the transition from a crystalline state to a state having
no long-range order but a local translational order, the minimization of the transition free
energy F with respect to the internal stress-field results in an equation of state relating the
stationary density of dislocations and the distortion field. The corresponding equilibrium state
equation (8) expresses the conservation of the dislocation flux, and from equation (6) one has
∂σ j i

∂xi
= 0, which corresponds to the zero divergence of the internal stress-field. Accordingly,

the different stages of the metamictization process are interpreted as a succession of internally
stressed equilibrium states where the internal stress-field compensates the space dependence
of the order-parameter gradient and critical wavevector. The amorphous domains (in the early
stage), localized crystallites (in the final stage), or the assembly of crystalline and amorphous
regions (in the intermediate regime), create a distortion field and a dislocation field which are
locally balanced by a stress-field deriving from a unique stress-field potential. The description
of the transformation as a reversible succession of equilibrium states is consistent with the
‘memory effect’ reported by Geisler [23] on partially metamict zircon, which is found to
recover epitaxially its crystalline form by isothermal annealing, in a three stage recovery
process. Note that this is not in contradiction with the intuitive idea that irradiation drives the
initial system far from its initial equilibrium crystalline state, i.e., the amorphization can be
viewed as a slowly driven system due to stress accumulation, the successive equilibrium states
undergoing a continuous evolution towards lower minima of the free energy. Our results show
that local equilibrium is realized in each stage of the metamictization process. Along the same
line the dislocation field assumed in our description may be observable in localized regions of
the sample, a property which is not contradicted by the low dislocation densities observed at
the microscopic scale in zircon and other metamict materials.
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3. The nucleation and growth process

The preceding picture provides only a continuum description of the internal forces acting in
the system, and it has to be complemented by a description of the nucleation and growth
process of the amorphous regions in the crystalline matrix. Referring to the observations in
zircon [13, 17, 24, 25] of amorphous nanodomains (embryos) created within the cascades
caused by α-recoil nuclei, one can assume that these embryos serve for a swelling of the
amorphous regions via a merging and impingement process of the recoil-produced cascades.
Note that this mechanism is different from the conventional growth process described, for
example, at martensitic transformations, in which a fraction of the martensitic embryos increase
cooperatively in size on approaching the critical temperature. The free energy of the defected
crystal has the general form [26]

F(η, η∗, uik) =
∫

[φ(η, η∗, Diη, D•
i η

∗) + a(ηη∗)2uii + fel(uik)] dV (10)

whereφ is the free-energy density discussed above, the uik are the strain components induced by
the embryos, (ηη∗)2 uii is the striction coupling between the order parameter and the dilatation
produced by the embryos, and fel(uik) = Ciklm uikulm/2 is the corresponding elastic energy.
For the purpose of our demonstration one can express φ in the simple form1

φ = α

2
ηη∗ +

β

4
(ηη∗)2 + · · · +

δ

2
DiηD•

i η
∗ (11)

where β, δ . . . are constant coefficients, and α = α0(c0 − c), c representing the concentration
of amorphous embryos and c0 a critical concentration. Replacing Diη and D•

i η∗ by their
expressions and using the notation η1 = ρ cosϕ, η2 = ρ sin ϕ, φ takes the form

φ = α̃

2
(η2

1 + η2
2) +

β

4
(η2

1 + η2
2)

2 + · · · +
δ

2
[(∇η1)

2 + (∇η2)
2] (12)

with α̃ = α − δγ
∑

j A ji
∂ϕ

∂x j
+ δ

2

(
γ

∑
j A ji

)2
. The equations minimizing F are

δ�ηi − (α̃ + 2auii)ηi = βηi (η
2
1 + η2

2) + · · · (i = 1, 2), and
∂σik

∂xk
= 0 (13)

where σik = Ciklm ulm +a(η2
1 +η2

2)δik is the internal stress-tensor. For each isolated embryo the
system of equations (13) possesses two solutions: (1) η1 = η2 = 0, ui j = u0

i j(xk),s where the
strain-field induced by the embryo obeys the condition u0

i j(∞) = 0; (2) η1 = η2 = η(xk) �=
0, ui j = u0

i j(xk)+O(η2), with η(∞) = 0. The two solutions describe stable states for different
positive values of α̃. In order to determine the value α̃∗ corresponding to the bifurcation from
one solution to another [27] one has to linearize equations (13) around η = 0. This yields the
auxiliary Schrödinger-type equation:

δ�ψ∗ = [α̃∗ + 2au0
ii(xk)]ψ∗ (14)

where ψ∗ is the eigenfunction associated with the eigenvalue α̃∗ of its basic state. For α̃ � α̃∗
the second solution branches off the first one and one can write [26, 27]

η = ξψ∗(xk) + O(ξ2), and

ui j(xk) = u0
i j(xk) +

aξ2

(2π)3

∫
Gik(k)k j kk Q(k) eik·r d3k (15)

where ξ is a normalized amplitude. The last term in equation (15) is a Fourier transform in k-
space, representing the contribution of the strain induced by the embryo. Gik(k) is the Fourier

1 Other invariants such as ηD•
i η

∗ ± η∗ Diη, or (DiηD•
i η

∗)2 are neglected.
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transform of the elastic Green function, and Q(k) = ∫
[ψ∗(xk)]2 e−ik·r d3r . The asymptotic

solution of equations (15) for the order parameter is η ≈ ξ e− r
rN , where rN is the radius of the

amorphous region given by

rN =
(
δ

α̃∗

)1/2

+ r0 =
(
δ

α0

)1/2

(cc − cN )
−1/2 + r0 (16)

where r0 is the initial radius of the amorphous embryo, cN is the concentration at which the
embryo nucleates, and cc = c0 + δγ

α0

∑
j A ji

∂ϕ

∂x j
− δ

2α0
(γ

∑
j A ji)

2 is a critical concentration,
depending on the internal stress-field potential,at which the merging of the amorphous embryos
occurs critically. Equation (16) shows that for large values of cN − cc, i.e. for a small
concentration of isolated embryos, the radius of the amorphous regions remains almost equal
to r0, whereas when cN approaches cc rN tends to diverge with the critical exponent −1/2.
The existence of a critical concentration of defects initiating the swelling of the amorphous
embryos was reported by Weber et al in ion-beam irradiated zircon [28]. The explicit form of
the local dilatation, created by the embryos above the critical concentration cc, is given by the
trace uii (xk), which can be worked out using the second equation (15) with j = i . It depends
on the shape assumed for the amorphous embryos and on the symmetry of the surrounding
crystal lattice [29].

4. Summary and conclusion

In summary, it has been shown that the phenomenological description of the crystalline-to-
metamict transformation can be inserted into an generalization of the Lifshitz–Dzialoshinskii
approach to the formation of inhomogeneous crystal phases. The description provides an
insight into the forces which ensure the equilibrium of the damaged crystal in the different
stages of the amorphization process, and into the nucleation and growth mechanism of the
amorphous regions. Only one critical regime is found in this mechanism, which corresponds
to the first percolation point described for the metamictization process in zircon [30]. The
absence of a second critical regime in our description is due to the simplified form assumed
for φ in equation (11). Including in φ the gauge invariant term ηD•

i η
∗ − η∗Diη gives rise, at

higher concentration cl > cc of amorphous embryos, to a second transition, analogous to the
lock-in transition found in incommensurate systems [15], that should correspond to the second
percolation point reported for the metamictization of zircon [30]. Note that the flexibility
of our approach is compatible with a variety of processes leading to the metamict state, in
agreement with the different behaviours reported in materials other than zircon. In particular,
the influence of the temperature T can be taken into account by assuming a linear dependence
of α0 on T . The application of external stresses results in a renormalization of the elastic
constants in fel(uik) and of the striction coupling in equation (10).

In conclusion, let us stress that the theoretical formalism introduced in the present work
applies more generally to any transformation leading to a state in which the long-range order
is lost but a local translational order is preserved. One should note the formal analogy existing
between

(1) our description of the metamict state, as resulting from the breaking of the translational
symmetry of the crystalline phase, in which the local spatial dependence of the order-
parameter gradient is compensated by an internal stress-field potential, and

(2) the phenomenological description of the superconducting state [31], resulting from the
breaking of the gauge symmetry of the normal phase, where the local time-dependence
of the order-parameter phase gradient is compensated by the electromagnetic potential.
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Thus, under the condition that the time and space variables are exchanged, the gauge
invariance of the free-energy densityφ associated with the crystalline–metamict transformation
is equivalent to the gauge invariance of the Lagrangian density in the action formalism of
superconductivity [32]. A number of properties of the metamict state, which are beyond the
scope of the present article, can be inferred from this analogy, for example the existence of
elastic vortices in the dislocation flux [33], reflected by the curl-like structure of equation (9),
that should induce density fluctuations in the amorphous material, as observed in zircon [24].
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Appendix

In the Landau theory of phase transitions the increment of the probability density describing
the change in the spatial distribution of atoms in a crystal undergoing a phase transition reads

δρk(�r) =
p∑

i=1

ηk
i (�r)�k

i (�r) (A.1)

where the �k
i (�r) are normalized functions transforming as the basis of an irreducible

representation (IR) of the parent high-symmetry space group G0, the k-vector corresponding
to a point of the Brillouin zone of the parent structure. The stable states of the crystal are
characterized by definite values ηk

i of the order-parameter components associated with an
absolute minimum of the transition free energy F(ηk

i ), expressed as a polynomial expansion
of the ηk

i . Lifshitz has noted [14] that when the transition leads to an inhomogeneous low-
symmetry structure, the preceding condition does not test completely the stability of the phases
at the macroscopic level, as F has also to be minimum with respect to variations of the ηk

i which
vary from one point to another in the low-symmetry phase. As a consequence, instead of a
homogeneous polynomial free energy F one has to consider a functional F = ∫

φ(ηk
i (�r)) d�r ,

where the sum runs over the volume of the system, the free-energy density φ depending on the
ηk

i and on their spatial derivatives. If the ηk
i vary slowly at the microscopic level Lifshitz shows

that to determine the eventual stability of an inhomogeneous structure it is sufficient to consider

antisymmetric gradient invariants of the form ηk
i
∂ηk

j

∂xl
− ηk

j
∂ηk

i
∂xl

, with i �= j, (xl = x, y, z). If
such terms (called Lifshitz invariants) are allowed by the parent symmetry, an inhomogeneous
phase may stabilize across a second-order transition from the parent phase. These ideas were
used by Dzialoshinskii [15] in the description of modulated (incommensurate) structures.
In these structures the transition wavevector k varies with temperature (or concentration or
pressure) within an interval �k, and therefore one has to consider the variation of δρk(�r) in
this interval. Dzialoshinskii proposed to fix the value of k = kc where kc represents a rational
vector associated with the lock-in transition, which generally takes place below the range of
stability of the incommensurate phase. The physical assumption underlying this choice is
that, within the incommensurate phase, the system is asymptotically governed by a periodic
potential possessing the symmetry of the lock-in phase, i.e., the incommensurate phase is
treated as a spatial modulation of the lock-in structure. As a consequence the �k

i functions
form the basis of a single IR associated with kc, but the order-parameter componentsηkc

i appear
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as slowly modulated functions of the actual order-parameter components ηk
i . As a result the

free energy F is a continuous function of k through the sequence of parent-incommensurate-
lock-in phases and is written as the sum over the volume of the system of a local density which
depends on the ηkc

i and on their derivatives with respect to the space coordinates.
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